Закон кулона формула в векторном виде. Закон кулона в такой форме

21.02.2024

Закон взаимодействия неподвижных точечных электрических зарядов (ТЗ) установлен в 1785 г. Ш. Кулоном (ранее этот закон был открыт Г. Кавендишем в 1773 году и оставался неизвестным почти 100 лет). Взаимодействие между электрическими зарядами осуществляется посредством электрического поля (ЭП). Всякий заряд изменяет свойства окружающего его пространства и создает в нем ЭП. Поле проявляет себя, воздействуя на заряд, помещенный в какую-либо его точку, силой.

Точечным (ТЗ)называется заряд, сосредоточенный на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которыми он взаимодействует. Точечный заряд (ТЗ) играет в учении об электричестве такую же важную роль, как и МТ (материальная точка) в механике. С помощью крутильных весов (рис. 2.1), сходных с теми, которые были использованы Кавендишем для определения гравитационной постоянной, Кулон изменил силу взаимодействия двух заряженных шариков, в зависимости от величины зарядов на них и расстояния между ними. При этом Кулон исходил из того, что при касании к заряженному металлическому шарику точно такого же незаряженного шарика заряд распределяется между обоими шариками поровну.

Закон Кулона : Сила взаимодействия двух неподвижных ТЗ пропорциональна величине каждого из зарядов и обратно пропорциональна квадрату расстояния между ними.

Направление силы совпадает с соединяющей заряды прямой.

где - сила, действующая на заряд q 1 со стороны заряда q 2 ;

Сила, действующая на заряд q 2 со стороны заряда q 1 ;

k-коэффициент пропорциональности;

q 1 ,q 2 - величины взаимодействующих зарядов;

r-расстояние между ними;- вектор, направленный от q 1 к q 2 .

Формула (2.2) – это запись закон Кулона в скалярной форме при взаимодействии ТЗ в вакууме. Численная величина коэффициента пропорциональности равна:

k = 1/(4pe 0) = 9·10 9 м/Ф; [ k ] = 1 H·м 2 / Kл 2 =1 м/Ф,

e 0 = 8,85·10 -12 Ф/м - электрическая постоянная.

В системе единиц СИ закон Кулона записывается ещё и так:

Формула (2.3) - векторная форма записи силы взаимодействия ТЗ в вакууме, где -орт оси .

Из опыта следует, что сила взаимодействия 2 данных зарядов (точечных) не изменяется, если вблизи них помещены еще какие-либо N заряды, а результирующая сила, с которой на некоторый заряд q а действуют все Nзарядов q i равна:

где - сила, с которой на заряд q a действует заряд q i , в отсутствие остальных (N-1) зарядов.

Соотношение (2.4) называют принципом суперпозиции (наложения) электрических полей.

Формула (2.4) позволяет, зная закон взаимодействия между точечными зарядами, вычислить силу взаимодействия между зарядами, сосредоточенными на телах конечных размеров.

Для этого необходимо каждый заряд протяженного тела разбить на столь малые заряды dq , чтобы их можно было считать точечными, вычислить силу взаимодействия по формуле (2.1) между зарядами dq , взятыми попарно, а затем произвести векторное сложение этих сил - т.е. применить метод дифференцирования и интегрирования (ДИ) . Во второй части метода наиболее трудным являются: выбор переменной интегрирования и определение пределов интегрирования. Для определения пределов интегрирования необходимо детально проанализировать, от каких переменных зависит дифференциал искомой величины, и какая переменная является главной, наиболее существенной. Эту переменную чаще всего и выбирают в качестве переменной интегрирования. После этого все остальные переменные выражают как функции от этой переменной. В результате дифференциал искомой величины принимает вид функции от переменной интегрирования. Затем определяют пределы интегрирования как крайние (предельные) значения переменной интегрирования. После вычисления определенного интеграла получают числовое значение искомой величины.

В методе ДИ большое значение имеет положение о границах применимости физических законов. Содержание физического закона не является абсолютным, а его использование ограничено рамками условий применимости. Часто физический закон можно распространить (изменив его форму) и за границы его применимости с помощью метода ДИ.

В основе этого метода (ДИ) лежат два принципа:

1) принцип возможности представления закона в дифференциальной форме;

2) принцип суперпозиции (если величины, входящие в закон, аддитивны).

Закон сохранения заряда

Электрические заряды могут исчезать и возникать вновь. Однако всегда возникают или исчезают два элементарных заряда противоположных знаков. Например, электрон и позитрон (положительный электрон) при встрече аннигилируют, т.е. превращаются в нейтральные гамма-фотоны. При этом исчезают заряды -е и +е. В ходе процесса, называемого рождением пары, гамма-фотон, попадая в поле атомного ядра, превращается в пару частиц – электрон и позитрон, при этом возникают заряды -е и +е .

Таким образом, суммарный заряд электрически изолированной системы не может изменяться. Это утверждение носит название закона сохранения электрического заряда .

Отметим, что закон сохранения электрического заряда тесно связан с релятивисткой инвариантностью заряда. Действительно, если бы величина заряда зависела от его скорости, то, приведя в движение заряды одного какого-то знака, мы изменили бы суммарный заряд изолированной системы.

Заряженные тела взаимодействуют друг с другом, причем одноименные заряды отталкиваются, а разноименные притягиваются.

Точное математическое выражение закона этого взаимодействия в 1785 г. установил французский физик Ш.Кулон. С тех пор закон взаимодействия неподвижных электрических зарядов носит его имя.

Заряженное тело, размерами которого можно пренебречь, по сравнению с расстоянием между взаимодействующими телами может быть принято за точечный заряд. Кулон в результате своих опытов установил, что:

Сила взаимодействия в вакууме двух неподвижных точечных зарядов прямо пропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними. Индекс «» у силы показывает, что это сила взаимодействия зарядов в вакууме.

Установлено, что закон Кулона справедлив на расстояниях от до нескольких километров.

Чтобы поставить знак равенства, необходимо ввести некоторый коэффициент пропорциональности, величина которого зависит от выбора системы единиц:

Уже отмечалось, что в СИ заряд измеряется в Кл. В законе Кулона известна размерность левой части ‑ единица силы , известна размерность правой части ‑ , поэтому коэффициент k получается размерным и равным . Однако в СИ этот коэффициент пропорциональности принято записывать в несколько другом виде:

следовательно

где фарад (Ф ) – единица электрической емкости (см. п. 3.3).

Величину называют электрической постоянной. Это действительно фундаментальная постоянная, фигурирующая во многих уравнениях электродинамики.

Таким образом, закон Кулона в скалярной форме имеет вид:

Закон Кулона может быть выражен в векторной форме:



где ‑ радиус-вектор, соединяющий заряд q 2 с зарядом q 1 , ; ‑ сила, действующая на заряд q 1 со стороны заряда q 2 . На заряд q 2 со стороны заряда q 1 действует сила (рис.1.1)

Опыт показывает, что сила взаимодействия двух данных зарядов не изменяется, если вблизи них расположить ещё какие-либо другие заряды.

Методы экспериментальной проверки закона Кулона

1. Метод Кавендиша (1773):

Ø заряд на проводящей сфере распределяется только по ее поверхности;

Ø Уильямс, Фоллер и Хилл-1971

2. Метод Резерфорда:

Ø опыты Резерфорда по рассеянию альфа-частиц на ядрах золота (1906)

Ø эксперименты по упругому рассеянию электронов с энергией порядка 10 +9 эВ

3. Резонансы Шумана:

Ø если для фотона, то ;

Ø для фотона можно записать;

Ø для v=7.83 Гц получим для

Принцип суперпозиции для электростатических сил

Формулировка:

Если электрически заряженное тело взаимодействует одновременно с несколькими электрически заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел

Электрический диполь: физическая модель и дипольный момент диполя; электрическое поле, создаваемое диполем; силы, действующие со стороны однородного и неоднородного электрических полей на электрический диполь.

Электрический диполь – система, состоящая из двух разноименных точечных электрических зарядов, модули которых равны:

Плечо диполя; O – центр диполя;

Дипольный момент электрического диполя:

Единица измерения - =Кл*м

Электрическое поле, создаваемое электрическим диполем:
Вдоль оси диполя:


Силы, действующие на электрический диполь

Однородное электрическое поле:

Неоднородное электрическое поле:

Концепция близкодействия, электрическое поле. Полевая трактовка закона Кулона. Напряженность электростатического поля, силовые линии. Электрическое поле, создаваемое неподвижным точечным зарядом. Принцип суперпозиции электростатических полей.

Дальнодействие – концепция классической физики, согласно которой физические взаимодействия передаются мгновенно без участия какого-либо материального посредника

Близкодействие – концепция классической физики, согласно которой физические взаимодействия передаются с помощью особого материального посредника со скоростью, не превышающей скорость света в вакууме

Электрическое поле – это особый вид материи, одна из составляющих электромагнитного поля, которое существует вокруг заряженных частиц и тел, а также при изменении в течение времени магнитного поля

Электростатическое поле – это особый вид материи, существующий вокруг неподвижных заряженных частиц и тел

В соответствии с концепцией близкодействия неподвижные заряженные частицы и тела создают в окружающем пространстве электростатическое поле, которое оказывает силовое воздействие на помещенные в это поле другие заряженные частицы и тела

Таким образом, электростатическое поле является материальным переносчиком электростатических взаимодействий. Силовой характеристикой электростатического поля является локальная векторная физическая величина – напряженность электростатического поля. Напряженность электростатического поля обозначается латинской буквой: и измеряется с системе единиц СИ в вольтах разделить на метр:

Определение: отсюда

Для поля, создаваемого неподвижным точечным электрическим зарядом:

Силовые линии электростатического поля

Для графического (наглядного) изображения электростатических полей применяются

Ø касательная к силовой линии совпадает с направлением вектора напряженности электростатического поля в данной точке;

Ø густота силовых линий (их число на единицу нормальной поверхности) пропорциональна модулю напряженности электростатического поля;

силовые линии электростатического поля:

Ø являются разомкнутыми (начинаются на положительных и заканчиваются на отрицательных зарядах);

Ø не пересекаются;

Ø не имеют изломов

Принцип суперпозиции для электростатических полей

Формулировка:

Если электростатическое поле создается одновременно несколькими неподвижными электрически заряженными частицами или телами, то напряженность данного поля равна векторной сумме напряженностей электростатических полей, которые создаются каждой из этих частиц или тел независимо друг от друга

6. Поток и дивергенция векторного поля. Электростатическая теорема Гаусса для вакуума: интегральная и дифференциальная формы теоремы; ее физические содержание и смысл.

Электростатическая теорема Гаусса

Поток векторного поля

Гидростатическая аналогия:

Для электростатического поля:

Поток вектора напряженности электростатического поля через поверхность пропорционален числу силовых линий, которые пересекают эту поверхность

Дивергенция векторного поля

Определение:

Единицы измерения:

Теорема Остроградского:

Физический смысл: расходимость вектора, указывает на наличие источников поля

Формулировка:

Поток вектора напряженности электростатического поля через замкнутую поверхность произвольной формы пропорционален алгебраической сумме электрических зарядов тел или частиц, которые находятся внутри этой поверхности.

Физическое содержание теоремы:

*закон Кулона, поскольку является его прямым математическим следствием;

*полевая трактовка закона Кулона на основе концепции близкодействия электростатических взаимодействий;

*принцип суперпозиции электростатических полей

Применение электростатической теоремы Гаусса для расчета электростатических полей: общие принципы; расчет поля равномерно заряженной бесконечно длинной тонкой прямой нити и равномерно заряженной безграничной плоскости.

Применение электростатической теоремы Гаусса

· справедлив только для взаимодействия точечных электрических зарядов , то есть таких заряженных тел, линейными размерами которых можно пренебречь по сравнению с расстоянием между ними.

· выражает силу взаимодействия между неподвижными электрическими зарядами, то есть это электростатический закон.

Формулировка закона Кулона :

Сила электростатического взаимодействия между двумя точечными электрическими зарядами прямо пропорциональна произведению величин зарядов и обратно пропорциональна квадрату расстояния между ними.

Коэффициент пропорциональности в законе Кулона зависит

1. от свойств среды

2. выбора единиц измерения величин, входящих в формулу.

Поэтому можно представить отношением ,

где - коэффициент, зависящий только от выбора системы единиц измерения ;

Безразмерная величина, характеризующая электрические свойства среды, называется относительной диэлектрической проницаемостью среды . Она не зависит от выбора системы единиц измерения и равна единице в вакууме.

Тогда закон Кулона примет вид: ,

для вакуума ,

тогда - относительная диэлектрическая проницаемость среды показывает, во сколько раз в данной среде сила взаимодействия между двумя точечными электрическими зарядами и , находящимися друг от друга на расстоянии , меньше, чем в вакууме.

В системе СИ коэффициент , и

закон Кулона имеет вид : .

Это рационализированная запись закона К улона.

Электрическая постоянная, .

В системе СГСЭ , .

В векторной форме закон Кулона принимает вид

где - вектор силы, действующей на заряд со стороны заряда ,

- радиус-вектор, соединяющий заряд с зарядом

r –модуль радиус-вектора .

Всякое заряженное тело состоит из множества точечных электрических зарядов, поэтому электростатическая сила, с которой одно заряженное тело действует на другое, равна векторной сумме сил, приложенных ко всем точечным зарядам второго тела со стороны каждого точечного заряда первого тела.

1.3.Электрическое поле. Напряженность .

Пространство, в котором находится электрический заряд, обладает определенными физическими свойствами .

1. На всякий другой заряд, внесенный в это пространство, действуют электростатические силы Кулона.

2. Если в каждой точке пространства действует сила, то говорят, что в этом пространстве существует силовое поле.

3. Поле наряду с веществом является формой материи.

4. Если поле стационарно, то есть не меняется во времени, и создается неподвижными электрическими зарядами, то такое поле называется электростатическим.

В электростатике одним из основополагающих является закон Кулона. Он применяется в физике для определения силы взаимодействия двух неподвижных точечных зарядов или расстояния между ними. Это фундаментальный закон природы, который не зависит ни от каких других законов. Тогда форма реального тела не влияет на величину сил. В этой статье мы расскажем простым языком закон Кулона и его применение на практике.

История открытия

Ш.О. Кулон в 1785 г. впервые экспериментально доказал взаимодействия описанные законом. В своих опытах он использовал специальные крутильные весы. Однако еще в 1773 г. было доказано Кавендишем, на примере сферического конденсатора, что внутри сферы отсутствует электрическое поле. Это говорило о том, что электростатические силы изменяются в зависимости от расстояния между телами. Если быть точнее — квадрату расстояния. Тогда его исследования не были опубликованы. Исторически сложилось так, что это открытие было названо в честь Кулона, аналогичное название носит и величина, в которой измеряется заряд.

Формулировка

Определение закона Кулона гласит: В вакууме F взаимодействия двух заряженных тел прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними.

Звучит кратко, но может быть не всем понятно. Простыми словами: Чем больший заряд имеют тела и чем ближе они находятся друг к другу, тем больше сила.

И наоборот: Если увеличить расстояние межу зарядами — сила станет меньше.

Формула правила Кулона выглядит так:

Обозначение букв: q — величина заряда, r — расстояние межу ними, k — коэффициент, зависит от выбранной системы единиц.

Величина заряда q может быть условно-положительной или условно-отрицательной. Это деление весьма условно. При соприкосновении тел она может передаваться от одного к другому. Отсюда следует, что одно и то же тело может иметь разный по величине и знаку заряд. Точечным называется такой заряд или тело, размеры которого много меньше, чем расстояние возможного взаимодействия.

Стоит учитывать что среда, в которой расположены заряды, влияет на F взаимодействия. Так как в воздухе и в вакууме она почти равна, открытие Кулона применимо только для этих сред, это одно из условий применения этого вида формулы. Как уже было сказано, в системе СИ единица измерения заряда — Кулон, сокращено Кл. Она характеризует количество электричества в единицу времени. Является производной от основных единиц СИ.

1 Кл = 1 А*1 с

Стоит отметить, что размерность 1 Кл избыточна. Из-за того что носители отталкиваются друг от друга их сложно удержать в небольшом теле, хотя сам по себе ток в 1А небольшой, если он протекает в проводнике. Например в той же лампе накаливания на 100 Вт течет ток в 0,5 А, а в электрообогревателе и больше 10 А. Такая сила (1 Кл) примерно равна действующей на тело массой 1 т со стороны земного шара.

Вы могли заметить, что формула практически такая же, как и в гравитационном взаимодействии, только если в ньютоновской механике фигурируют массы, то в электростатике — заряды.

Формула Кулона для диэлектрической среды

Коэффициент с учетом величин системы СИ определяется в Н 2 *м 2 /Кл 2 . Он равен:

Во многих учебниках этот коэффициент можно встретить в виде дроби:

Здесь Е 0 = 8,85*10-12 Кл2/Н*м2 — это электрическая постоянная. Для диэлектрика добавляется E — диэлектрическая проницаемость среды, тогда закон Кулона может применяться для расчетов сил взаимодействия зарядов для вакуума и среды.

С учетом влияния диэлектрика имеет вид:

Отсюда мы видим, что введение диэлектрика между телами снижает силу F.

Как направлены силы

Заряды взаимодействуют друг с другом в зависимости от их полярности — одинаковые отталкиваются, а разноименные (противоположные) притягиваются.

Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором. В физике обозначают как r 12 и как радиус-вектор от первого ко второму заряду и наоборот. Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:

Сила, приложенная к первому заряду со стороны второго обозначается как F 12. Тогда в векторной форме закон Кулона выглядит следующим образом:

Для определения силы приложенной ко второму заряду используются обозначения F 21 и R 21 .

Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Полезное

© annadetective.ru, 2024
Электрик дома